发展历程
语言建模的研究始于20世纪90年代,最初采用了统计学习方法,通过前面的词汇来预测下一个词汇。然而,这种方法在理解复杂语言规则方面存在一定局限性。

随后,研究人员不断尝试改进,其中在2003年,深度学习先驱Bengio在他的经典论文《A Neural Probabilistic Language Model》中,首次将深度学习的思想融入到语言模型中,使用了更强大的神经网络模型,这相当于为计算机提供了更强大的“大脑”来理解语言。这种方法让模型可以更好地捕捉语言中的复杂关系,虽然这一步很重要,但仍有改进的空间。
2024-06-05T08:09:20.png
大约在2018年左右,研究人员引入了Transformer架构的神经网络模型,通过大量文本数据训练这些模型,使它们能够通过阅读大量文本来深入理解语言规则和模式,就像让计算机阅读整个互联网一样。所以它对语言有了更深刻的理解。这种方法在很多任务上表现得非常好。

与此同时,研究人员发现,随着语言模型规模的扩大(增加模型大小或使用更多数据),模型展现出了一些惊人的能力,通常在各种任务中表现显著提升。这时我们进入了大语言模型(LLM)时代。

大语言模型的概念
大语言模型(英文:Large Language Model,缩写LLM),也称大型语言模型,是一种人工智能模型,旨在理解和生成人类语言。

通常,大语言模型(LLM)指包含数百亿(或更多)参数的语言模型,这些模型在大量的文本数据上进行训练,例如国外的有GPT-3、GPT-4、PaLM、Galactica和LLaMA等,国内的有ChatGLM、文心一言、通义千问、讯飞星火等。

在这个阶段,计算机的“大脑”变得非常巨大,拥有数十亿甚至数千亿的参数。这就像是将计算机的大脑升级到了一个巨型超级计算机。这让计算机可以在各种任务上表现非常出色,有时甚至比人类还要聪明。

为了探索性能的极限,许多研究人员开始训练越来越多庞大的语言模型,例如拥有1750亿参数的GPT-3和5400亿参数的PaLM。尽管这些大型语言模型与小型语言模型(例如BERT的3.3亿参数和GPT-2的15亿参数)使用相似的架构和预训练任务,但它们展现出截然不同的能力,尤其在解决复杂任务时表现出了惊人的潜力,这被称为“涌现能力”。以GPT-3和GPT-2为例,GPT-3可以通过学习上下文来解决少样本任务,而GPT-2在这方面表现较差。因此,研究界给这些庞大的语言模型起了个名字,称之为“大语言模型(LLM)”。而LLM的一个杰出应用就是ChatGPT,它是GPT系统LLM用于与人类对话式应用的大胆尝试,展现出了非常流畅和自然的表现。

LLM的应用和影响
LLM已经在许多领域产生了深渊的影响。在自然语言处理领域,它可以帮助计算机更好地理解和生成文本,包括写文章、回答问题、翻译语言。在信息检索领域,它可以改进搜索引擎,让我们更轻松地找到所需的信息。在计算机视觉领域,研究人员还在努力让计算机理解图像和文字,以改善多媒体交互。】

最重要的是,LLM的出现让人们重新思考了通用人工智能(AGI)的可能性。AGI是一种像人类一样思考和学习的人工智能。LLM被认为是AGI的一种早起形式,这引发了对未来人工智能发展的许多思考和计划。

总之,LLM是一种令人兴奋的技术,它让计算机更好地理解和使用语言,正在改变着我们与技术互动的方式,同时也引发了对未来人工智能的无限探索。

大模型的能力、特点
大模型的能力
涌现能力(energent abilities)
区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力指的是一种令人惊讶的能力,它在小型模型中不明显,但在大型模型中显著出现。可以类比到物理学中的相变现象,涌现能力的显现就像是模型性能随着规模增大而迅速提升,超过了随机水平,也就是我们常说的量变引起了质变。

具体类说,涌现能力可以定义为与某些复杂任务相关的能力,但我们更关注的是它们具备的通用能力,也就是能够应用于解决各种任务的能力。接下来,让我们简要介绍三个典型的LLM涌现能力:

上下文学习:上下文学习能力是由GPT-3首次引入的。这种能力允许语言模型在提供自然语言指令或多个任务示例的情况下,通过理解上下文并生成相应输出的方式来执行任务,而无需额外的训练或参数更新。
指令遵循:通过使用自然语言描述的多任务数据进行微调,也就是所谓的指令微调,LLM被证明在同样使用指令形式化描述的未见过的任务上表现良好。这意味着LLM能够根据任务指令执行任务,而无需事先见过具体示例,这展示了其强大的泛化能力。
逐步推理:小型语言模型通常难以解决涉及多个推理步骤的复杂任务,例如数学问题。然而,LLM通过采用“思维链”推理策略,可以利用包含中间推理步骤的提示机制来解决这些任务,从而得到最终答案。据推测,这种能力可能是通过对代码的训练获得的。
作为基座模型支持多元应用的能力
在2021年,斯坦福大学等多所高校的研究人员提出了基座模型(foundation model)的概念,这更清晰地描述了之前学界所称的预训练模型的作用。这是一种全新的AI技术范式,借助于海量无标注数据的训练,获得可以适用于大量下游任务的大模型(单模态或者多模态)。这样,多个应用可以只依赖一个或少数几个大模型进行统一建设。

大语言模型是这个新模式的典型例子,使用统一的大模型可以极大地提高研发效率,相比于分散的模型开发方式,这是一项本质上的进步。大型模型不仅可以缩短每个具体应用的开发周期,减少所需人力投入,也可以基于大模型的推理、常识和写作能力,获得更好的应用效果。因此,大模型可以成为AI应用开发的大一统基座模型,这是一个一举多得、全新的范式,值得大力推广。

支持对话作为统一入口的能力
让大语言模型真正火爆的契机,是基于对话聊天的ChatGPT。事实上,业界很早就发现了用户对于对话交互的特殊偏好,陆奇在微软期间2016年就推进“对话即平台(conversation as a platform)”的战略。此外,苹果Siri、亚马逊Echo等基于语音对话的产品也非常受欢迎,反映出互联网用户对于聊天和对话这种交互模式的偏好。虽然之前的聊天机器人存在各种问题,但大型语言模型的出现再次让聊天机器人这种交互模型可以重新想象。用户愈发期待像钢铁侠中“贾维斯”一样的人工智能,无所不能、无所不知。这引发我们对于智能体(Agent)类型应用前景的思考,Auto-GPT、微软Jarvis等项目已经出现并受到关注,相信未来会涌现出很多类似的以对话形态让助手完成各种具体工作的项目。

大模型的特点
LLM具有多种显著特点,这些特点使它们在自然语言处理和其他领域中引起了广泛的兴趣和研究。以下是LLM的一些主要特点:

巨大的规模:LLM通常具有巨大的参数规模,可以达到数十亿甚至数千亿个参数。这使得它们能够捕捉更多的语言知识和复杂的语法结构。
预训练和微调:LLM采用了预训练和微调的学习方法。它们首先在大规模文本数据上进行预训练(无标签数据),学会了通用的语言表示和知识,然后通过微调(有标签数据)适应特定任务,从而在各种NLP任务中表现出色。
上下文感知:LLM在处理文本时具有强大的上下文感知能力,能力理解和生成依赖于前文的文本内容。这使得它们在对话、文章生成和情境理解方面表现出色。
多语言支持:LLM可以用于多种语言,不仅限于英语。它们的多语言能力使得跨文化和跨语言的应用变得更加容易。
多模态支持:一些LLM已经扩展到支持多模态数据,包括文本、图像和语音。这意味着它们可以理解和生成不同媒体类型的内容,实现更多样化的应用。
涌现能力:LLM表现出令人惊讶的涌现能力,即在大规模模型中出现但在小型模型中不明显的性能提升。这使得它们能够处理更复杂的任务和问题。
多领域应用:LLM已经被广泛应用于文本生成、自动翻译、信息检索、摘要生成、聊天机器人、虚拟助手等多个领域,对人们的日常生活和工作产生了深远的影响。
伦理和风险问题:尽管LLM具有出色的能力,但它们也引发了伦理和风险问题,包括生成有害内容、隐私问题、认知偏差等。因此,研究和应用LLM需要谨慎。

最后修改:2024 年 06 月 05 日
如果觉得我的文章对你有用,请随意赞赏